Cloudfier: Automatic Architecture for Information
Management Applications

Rafael Chaves

Abstratt Technologies
Florian6polis — SC — Brazil

rafael@abstratt.com

http://youtu.be/Ntya06InAbU

Abstract. Information management applications have always taken up a
significant portion of the software market. The primary value in this kind of
software is in how well it encodes the knowledge of the business domain and
helps streamline and automate business activities. However, much of the effort
in developing such applications is wasted dealing with technological aspects,
which in the grand scheme of things, are of little relevance.

Cloudfier is a model-driven platform for development and deployment of
information management applications that allows developers to focus on
understanding the business domain and building a conceptual solution, and
later apply an architecture automatically to produce a running application.
The benefit is that applications become easier to develop and maintain, and
inherently future-proof.

1. Motivation

Information management systems such as line-of-business and departmental
applications make up a significant portion of what is produced by the software industry.
The primary value in those kinds of applications is in how well they encode the
knowledge of the business domain they serve and the business-centric features they
provide that streamline, automate and control key business activities and processes.
They tend to have fairly standard requirements on deployment technology stack though.

Yet, much of the effort in building and maintaining such applications is wasted
on mapping a conceptual solution (that usually only exists in the developers' minds) to a
concrete solution using some general purpose implementation language — which, by the
way, often provide poor capabilities for encoding domain knowledge.

A technology stack, while an enabler, is also a major liability — an application
needs to be regularly updated to keep up with evolution of the components of the
chosen stack, even if there are no changes in the business requirements; and if the
platform is eventually discontinued, businesses are faced with the hard reality of
keeping using an unsupported platform, or a costly rewrite of the application from
scratch on some alternative platform.

Cloudfier is intended as a solution for this quagmire: applications are domain-
centric, described using a high-level language, and free from technological concerns.

mailto:rafael@abstratt.com

The architecture is defined separately from the application, and applied automatically, at
deploy time, and evolves independently. Since the code is much simpler (as it ignores
technological concerns) and the language better suitable for describing business
domains, it is much easier to learn the domain requirements and rules from the
application code.

2. Cloudfier features

Cloudfier is a platform for development and deployment of line of business applications
based on model-driven development with executable models [Mellor, 2002]. In
Cloudfier, applications only address the business requirements explicitly — the technical
requirements are fulfilled automatically by the platform.

2.1. Modeling L anguage

Cloudfier applications are built using UML [Object Management Group, 2011], but that
may not be obvious at first glance. UML, as a high-level language, provides a set of
features for conceptual modeling of solutions that is unparalleled in breadth by any
general purpose programming language currently available. However, its features for
executable modeling (informally known as action semantics) are not exposed at all by
the graphical notation. Hence, Cloudfier adopts TextUML [TextUML, 2014], a textual
notation for UML that exposes the structural and behavioral language elements required
for building UML models that are precise and complete enough to be executable.

2.2. Development Environment

Development in Cloudfier happens all within the web browser. In order to accomplish
that, Cloudfier builds on Orion, an open-source platform for web-based development.
Orion is a generic foundation for building cloud-based development environments, just
as Eclipse was for desktop-based IDEs'. Cloudfier builds on three main areas of Orion:

Editor-based features. Orion provides a highly functional text editor. Cloudfier
extends the Orion text editor with a TextUML specific syntax highlighter, a validator,
an automatic code formatter, and an outline analyzer.

Shell-based features. Orion sports a Shell page, a page where users can issue
commands as if they were working at a (very simple) character terminal. Many of
Cloudfier features are triggered using shell commands.

Collaboration and Versioning. The textual nature of Cloudfier applications
makes for a great fit for source control. Orion includes a rich support for collaboration
via Git repositories, which can be used for developing Cloudfier applications.

2.3. Deployment

Cloudfier contributes a shell command that performs a full deploy of the application.
This command recompiles the application, and after ensuring it is valid, publishes the
model into the runtime and recreates the database to back it. After a successful deploy
(using the full-deploy command), the user is presented with links for exploring the
application using automatically generated user interfaces and a REST API.

1 The similarities go further: Orion is also an Eclipse.org project, and was also started by IBM

» cloudfier full-deploy .
Model compiled successfuly in 2.486s
Database was reset

Start desktop U
Start mobile U
Browse REST API (make sure to log in via a Ul first)

Figure 1. Deploying the application
2.4. Automated testing

Executable models are programs, and as such they can have bugs, so Cloudfier supports
automated testing.

Tests are defined in Cloudfier at the model level, following the xUnit style. A
stereotype allows developers to mark a class as a test class. Test cases are any public
parameter-less operations found in a test class. Test cases are expected to complete
successfully, but it is also possible to mark a test case as expecting a failure, which can
include the name of the constraint expected to fail.

Once the application is recompiled, the user can run all tests in the project using
the run-tests command.

» cloudfier run-tests .

¥ tests.CarCenarios.availableUponReturn

¥ tests.CarCenarios. pricelsTooHigh

¥ tests.CarCenarios. pricelsTooLow

v tests.CarCenarios.startsAsAvailable

v tests.CarCenarios.startsAsValid

v tests.CarCenarios.tooNew

v tests.CarCenarios.tooOld

¥ tests.CarCenarios.unavailableWhenRented

¥ tests.CarCenarios. unavailableWhenUnderRepair

X tests.CustomerScenarios.rentalHistory
Cause: Constraint violated car_rental::Customer::rent - no_current_rental
tests::CustomerScenarios: rentalHistory (tests.tuml:22)

¥ tests.RentalCenarios.carUnavailable

X tests.RentalCenarios. finishedUponReturn
Cause: Value is false
tests::RentalCenarios::finishedUponReturn (tests.tuml:60)

v tests.RentalCenarios.oneCarPerCustomer

v tests.RentalCenarios.startsAsInProgress

Figure 2. Running the application automated tests
2.5. Automatic REST API Generation

No application is an island. Cloudfier applications integrate with external systems via a
(potentially bidirectional) REST API.

By default, every application has a dynamically generated inbound REST API
that exposes all features of the application in a RESTful way, including both (structural)
metadata and data. In fact, the REST API is the only way data can get out or into a
Cloudfier application, user interfaces (generated or hand-crafted) have to go through the
same REST APIL

For the cases when the application should reach out to an external system,
Cloudfier can provide an outbound API as well. Basically, whenever the application
includes an external service class (where service and external are UML stereotypes),
that means such service will not be part of the application itself, and any operation calls
or signals sent to it will be delegated to its corresponding external REST endpoint.

2.6. Automatic User Interface Generation

Cloudfier generates a fully functional web-based user-interface for accessing the
application (a variant for mobile devices is under development).
Logged in as: guest Log out

Car

- Name Current Rental
Rental

Stephanie Enever
Model Rob Padaratz

Jeremy Wilson
Make
Customer

1 of 4 rows

Rent 4
LI el Rent
Car * : | Honda Civic... »
Name : Maya deSouza
Honda Civic - DEF-456
Rentals Toyota Corolla - XYZ-987
Description : Honda Civic on 2014/05/28 Start : 2014/05/28
Car : Honda Civic - DEF-456 Customer : Maya deSouza

Figure 3. Cloudfier can generate a fully functional user interface automatically

The generated user interface allows users to perform basic CRUD manipulation
of instances of the entities in the system, ensuring constraints defined by the model are
honored (lower/upper boundaries, data type conformance, invariants). The UI allows the
user to perform business-specific actions on the instances (based on operations defined
in the model). It can also enable actions conditionally, based on their preconditions
being satisfied (e.g., a customer can only rent a car if it has no pending payments). And
if an operation receives a reference to some entity instance as a parameter (e.g., the car
to rent), it will only offer those instances that would satisfy the corresponding
operation's preconditions (e.g., only cars that are available). That is possible due to the
application being a precise and detailed model, and the platform is aware of all that
meta-information.

3. Developing an application

Consider you were building a simple expense reporting application. The requirements
are quite trivial:

REQ1 Employees report expenses, including description, amount, and date.

REQ2 An expense starts as a draft, which still needs to be explicitly submitted.
REQ3 Once submitted, an expense can be approved, rejected, which are final.
REQ4 Rejection must include a rejection rationale to the submitter.

REQ5 Expenses below a threshold of $50.00 can be automatically approved.

REQ6 A submitter should be able to see all of her expenses classified by status.
REQ7 A submitter cannot approve her own expenses.

From REQI, two entities jump to one's eyes: Employee and Expense. At a minimum,
we would need a name to identify the employee:

class Employee
attribute name : String;
end;

Expense is going to be a bit more elaborated:

class Expense

attribute description : String;

attribute amount : Double;

attribute dateReported : Date := { Date#today() };
end;

There is also a relationship — an employee can have multiple expenses:

association EmployeeExpenses
navigable role submitter : Employee;
navigable role expenses : Expense[*];
end;

Based on REQ2 and REQ3, an expense starts in Draft status, and can then be
submitted. Once submitted, it can be approved or rejected. That calls for a state
machine:

class Expense ..
attribute status : Status;
statemachine Status
initial state Draft end;
state Submitted end;
state Approved end;
state Rejected end;
end;
end;

This is a good for a start but, as is, expenses will be stuck forever in the Draft
status — the state machine is lacking transitions between states (and what triggers them):

statemachine Status
initial state Draft
transition on call(submit) to Submitted;
end;
state Submitted
transition on call(approve) to Approved;
transition on call(reject) to Rejected;
end; ..
end;

Which in other words, means: an expense starts as Draft; once the operation
submit is invoked (generating an operation call event), it becomes Submitted; from
there, it can be approved or rejected. But we have yet to define those operations:

class Expense ..
attribute comment : Memo[0,1];
operation submit();
operation approve();
operation reject(reasonForRejection : Memo);
begin
self.comment := reasonForRejection;
end;
end;

Now not only we have operations to trigger the transitions, but we also defined
behavior for the only one that needed any: we require and record a comment (a new
attribute) for rejection (REQ4).

Still from the point of view of object life cycle, the last thing missing is REQS —
we need a direct transition from Draft to Approved, guarded on whether the expense
admits automatic approval:

class Expense ..
private derived attribute automaticApproval : Boolean { self.amount < 50.0 };
statemachine Status
initial state Draft
transition on call(submit) to Approved when { self.automaticApproval };
transition on call(submit) to Submitted;
end;
. end;
end;

There are now only two requirements left. REQG6 can be satisfied with derived
associations in Employee. Let's start with the listing of expenses in Draft (adding
derived associations for filtering based on other statuses would be analogous):

class Employee ..
derived attribute draftExpenses : Expense[*] := {
Expense#byStatus (self<-EmployeeExpenses->expenses, Expense::Status#Draft)
Yi
end;
class Expense ..
private static query byStatus(expenses : Expense[*],

toMatch : Status) : Expense[*];
begin

return expenses.select((e : Expense) : Boolean { e.status == toMatch });
end;

end;

The expression rolel <-association->role2 traverses the association from rolel
to role2. The helper query byStatus uses a built-in select operation to filter a set based
on a criteria (a closure that takes an object and returns a boolean)>.

Which leaves us with REQ7, our last requirement. In order to prevent an
employee from approving her own expenses, we need a precondition based on the user
currently logged in:

class Expense ..
operation approve()
precondition must be_another user { not (System#user() == self.submitter) };

. end;

System is a built-in class that among other things gives access to the logged-in
user.

And that does it. We have now a fully functional application that satisfies all
requirements. Or do we? In order to ensure the application satisfies the requirements,
we should encode the requirements as automated test cases. For example:

package tests;

[Test] class ExpenseRequirements
operation expenseUnder50IsEligibleForAutomaticApproval();
begin
Assert#isTrue(Tests#declareExpense(49.9).automaticApproval);
Assert#isTrue(not Tests#declareExpense(50.0).automaticApproval);
end;
end;

end.

End users and other non-technical stakeholders can do further validation by
exploring the application functionality via the generated user interface.

2 Closures and collection operations are features added to UML via a profile

4. Architecture

Cloudfier is a double-sided system: it is a development environment, and a deployment
platform, each with their own audiences. As such, Cloudfier's architecture is easier to
describe by looking at it from each perspective at a time.

4.1. Development Use Cases

During development, developers use Cloudfier to edit and validate their work, deploy a
new version of the application and run automated tests. As the developer edits the
content in the editor, or issues commands in the Shell page, REST requests are sent to
server-side services for model validation, application deployment, database deployment,
test running etc. These services read from and/or write to the model repository or the
application database (directly or, in the case of the test runner, also via the model
interpreter).

Cloudfier server

- Application odel
Deployer repository

. . Database
db-deplay { full-deploy —— | Deployer

Developer

app-deploy 7 full-deploy

Applieation |
database

IDE in browser -
run-tests

Model

[e————=>
Test Runner Interpreter

Figure 4. The architecture for development use cases

4.2. Production Use Cases

Once deployed, the application functionality becomes available via REST endpoints.
The model repository is no longer modified but drives API rendering and model
execution. The model interpreter also relies on the model repository to update and query
data in the database (as the database schema matches the model metadata). The Data
API performs all data updates and queries, and operation invocations via the model
interpreter.

Cloudfier server

oae
repository

S— \
Application
REST AFI
End- u@\ /

Figure 5. The architecture for application production use cases

Model
Interpreter

Appieation |
database | .

5. Related Tools

Tools for generating full-fledged applications from executable models, such as
Bridgepoint, Kennedy-Carter and Pathfinder, have existed for a long time, some even
before UML existed. Those tools tend to be marketed as suitable for mission critical
software development to large clients in the automotive, aviation, defense and
telecommunication industries. Cloudfier is an attempt at bringing the same benefits to
mainstream software development.

Also, in recent years, there has been no scarcity of frameworks that automate
API creation, database schema creation, object-relational mapping etc for a domain
model. However, we believe frameworks fall short of what the model-driven
development approach that tools like Cloudfier can offer: 1) implementation languages
lack important constructs that are needed for domain modeling, 2) they limit what
platforms one can deploy to, and 3) and they require a full rewrite when migrating to a
completely new platform.

References

Mellor, S. and Balcer, M. (2002). Executable UML: A Foundation for Model-Driven
Architecture, Addison-Wesley.

Object Management Group, 2011. Unified Modeling Language Superstructure version
2.4.1. Available at <http://www.omg.org/spec/UML/2.4.1/>. Visited in June 2014.

TextUML, 2014. TextUML Toolkit web site. Available at <http://textuml.org>. Visited
in June 2014.

http://textuml.org/
http://www.omg.org/spec/UML/2.4.1/

